
 Summary .11

 Brief history of Delphi and its evolution .17

 ● Origins and Launch .18
 ● First versions .18
 ● Expansion and Growth .19
 ● Transition and Change of Ownership .19
 ● Renovation under Embarcadero .20
 ● Delphi Today .20

 Introduction to Object Orientation .23

 ● Basic OOP Concepts .26
 ● Class .26

 ○ Structure of a Class .27
 ○ Importance of Classes .30

 ● Object .30
 ○ Creating an Object .31
 ○ The new Operator vs. Create Method .32
 ○ Memory Management .32
 ○ Identity and State .33

 ● Method .34
 ○ Functions vs. Procedures .35
 ○ Definition and Implementation .35
 ○ Visibility of Methods .37
 ○ Virtual Methods and Polymorphism.. .37
 ○ Importance of Methods .38

 ● Properties... .39
 ○ Definition of Properties .40
 ○ Access Methods .41
 ○ Read-Only and Write-Only Properties .41
 ○ Properties and Encapsulation .42
 ○ Advanced Properties .42

 ● Abstraction .43
 ○ How Abstraction Works .44
 ○ Benefits of Abstraction .45
 ○ Levels of Abstraction .46

 ● Encapsulation .47
 ○ Access Modifiers .48
 ○ Principle of Least Privilege .49
 ○ Advantages of Encapsulation .49

 ● Inheritance .51
 ○ Benefits of Inheritance .51
 ○ Implementation of Inheritance in Delphi .52
 ○ Overriding Methods .53
 ○ Constructors and Destructors in Inheritance .54
 ○ Considerations about Inheritance .54

 ● Polymorphism .55
 ○ Types of Polymorphism .56
 ○ Inclusion Polymorphism in Delphi .56
 ○ Polymorphism and Interfaces .57
 ○ Advantages of Polymorphism .59

 ● Abstraction, Encapsulation, Inheritance, and Polymorphism .60
 ○ Abstraction .60
 ○ Encapsulation .61
 ○ Inheritance .61
 ○ Polymorphism .62

 ● Advantages of Using OO in Delphi .63
 ○ Improvement in Code Organization .64
 ○ Code Reusability .64
 ○ Maintainability .65
 ○ Flexibility through Polymorphism .65
 ○ Rapid Application Development (RAD) .66
 ○ Quality and Performance .66

 Working with Classes and Objects in Delphi .69

 ● Inheritance Multiple vs. Interfaces .72
 ○ Multiple Inheritance .72
 ○ Multiple Inheritance and its Complexities .73
 ○ Alternative in Delphi: Composition .75
 ○ Interfaces as a Polymorphic Solution .76

 ● Abstract and Concrete Classes .77
 ○ Abstract Classes .78
 ○ Concrete Classes .79
 ○ When to Use Them .81

 ● Using TObject and Other Base Objects in Delphi .82
 ○ TObject: The Cornerstone .83
 ○ TComponent: Base for Visual and Non-Visual Components .84
 ○ Other Base Classes .85

 ● Memory Management and Property Models .87
 ○ Memory Management in Delphi .88
 ○ Manual Memory Management .88
 ○ Automatic Memory Management .89
 ○ Property Models .90
 ○ Read and Write Properties .91
 ○ Calculated Properties .91

 ● Design Patterns for Object Creation and Destruction .93
 ○ Singleton Pattern .93
 ○ Factory Method Pattern .95
 ○ Prototype Pattern .96

 ● Dynamic Methods and Properties .98
 ○ Dynamic Methods .98
 ○ Using the Dynamic Keyword .98
 ○ Dynamic Properties .99
 ○ Simulating Dynamic Properties .100

 ● Reflection and Metaprogramming .102
 ○ Reflection in Delphi .102
 ○ Metaprogramming in Delphi .104
 ○ Example of Metaprogramming in Delphi .104

 Delphi and the Use of Interfaces .107

 ● Definition and Implementation of Interfaces .110
 ○ Definition of Interfaces .110
 ○ Implementation of Interfaces .111
 ○ Automatic Memory Management with Interfaces .112
 ○ Advantages of Using Interfaces .113

 ● Interfaces vs. Inheritance .114
 ○ Inheritance .115
 ○ Advantages of Inheritance .115
 ○ Disadvantages of Inheritance .116
 ○ Interfaces .116
 ○ Advantages of Interfaces .116
 ○ Disadvantages of Interfaces .117
 ○ Interfaces vs. Inheritance in Delphi .117

 ● Design Patterns with Interfaces .120
 ○ Strategy Pattern .120
 ○ Observer Pattern .121
 ○ Factory Pattern .122
 ○ Adapter Pattern .123

 ● Practical Examples of Using Interfaces .125
 ○ Example 1: Plugin System .125
 ○ Example 2: Data Access Abstraction .127

 Conclusion .131

